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Percolation transition of cooperative mutational
effects in colorectal tumorigenesis
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Cancer is caused by the accumulation of multiple genetic mutations, but their cooperative

effects are poorly understood. Using a genome-wide analysis of all the somatic mutations in

colorectal cancer patients in a large-scale molecular interaction network, here we find that a

giant cluster of mutation-propagating modules in the network undergoes a percolation

transition, a sudden critical transition from scattered small modules to a large connected

cluster, during colorectal tumorigenesis. Such a large cluster ultimately results in a giant

percolated cluster, which is accompanied by phenotypic changes corresponding to cancer

hallmarks. Moreover, we find that the most commonly observed sequence of driver muta-

tions in colorectal cancer has been optimized to maximize the giant percolated cluster. Our

network-level percolation study shows that the cooperative effect rather than any single

dominance of multiple somatic mutations is crucial in colorectal tumorigenesis.
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Genes interact with each other epistatically, and multiple
somatic mutations are often involved in tumorigenesis1, 2.
However, little is known regarding their cooperative effect

at the genome-wide level. Previous studies have shown that
combinations of multiple mutations rather than a single mutation
might play important roles in tumorigenesis. For instance,
mutations of certain genes do not occur randomly but tend to co-
occur in cancer patients3, 4, and colorectal cancer develops
through the sequential accumulation of driver mutations such as
APC, KRAS, PI3K, and TP535–8. This suggests that the coopera-
tivity of driver mutations might be an important factor for the
development and progression of cancer. There have been
attempts to identify critical pairs of cancer-inducing genes by
statistically examining their cooperative effect, but the hidden
mechanism underlying such cooperative multiple mutations
during tumorigenesis remains a perplexing puzzle.

Most genetic alterations in cancer influence signal transduc-
tion, which is under complicated regulation8, 9. Hence, the
interaction of multiple somatic mutations should be investigated
in the underlying molecular regulatory network. Co-occurring
mutations in cancer are often found to be involved in different
signaling pathways3, 4, 10, so we can infer that they provide
additive or even synergistic effects on the selective growth
advantage of cancer. However, genes mutated in an exclusive way
are likely to be involved in the same signaling pathway; these
rarely confer any significant selective growth advantage on cancer
due to the fact that the functional consequences of single muta-
tions or double mutations are similar3, 4, 10, 11. These results
suggest that whether a pair of somatic mutations is populated in
the same signaling pathway or in distinct pathways might be
crucial for tumorigenesis. This also highlights the need to
investigate the cooperativity of somatic mutations upon the
underlying molecular interaction network. Recent network-based,
pan-cancer analysis studies showed that the topological location
of somatic mutations in the protein–protein interaction (PPI)
network might be closely associated with the clinical outcome.
Hofree et al.12 proposed such a network-based stratification of
cancer patients based on The Cancer Genome Atlas (TCGA),
where a network propagation of somatic mutations on the PPI
network was introduced by assigning high values to non-mutated
genes that are close to mutated genes. Another study proposed to
identify significantly mutated sub-networks consisting of cano-
nical signaling pathways and other parts that are rarely affected
by mutations for each cancer type based on a heat diffusion
model, wherein hot genes (frequently mutated genes such as
TP53) propagate their heat to their neighboring genes13. These
studies, however, provide only limited information regarding the
influence of multiple somatic mutations on tumorigenesis, which
involves the dynamical change of cooperative mutation effects
upon the underlying molecular interaction network.

Percolation, a popular cooperative phenomenon in physical
systems, describes the dynamical properties of various complex
networks, where the system undergoes a critical transition in size
or functioning during its growing process, called a percolation
transition14–16. Examples include spreading of computer viruses
on computer networks17, rumor spread or information diffusion
in social networks14, 18, and epidemic spreading of infectious
diseases over a network of towns19. To explore such a cooperative
phenomenon of somatic mutations in tumorigenesis, we employ a
network propagation method to measure the spreading of the
influence of the somatic mutations on the molecular interaction
network and then examined the cooperative effect of the somatic
mutations by mapping all of the mutations observed in colorectal
cancer from TCGA to a large-scale molecular interaction net-
work. Throughout this network-level systems biological study, we
find that a subnetwork area representing the cooperative effect of

multiple somatic mutations forms a giant cluster (GC), which is
the largest connected subnetwork in which all genes have muta-
tion influence scores beyond a certain threshold. This cluster
undergoes such a percolation transition during tumorigenesis,
resulting in a giant percolated cluster (GPC) accompanied by
phenotypic changes corresponding to cancer hallmarks. Intrigu-
ingly, we further find that the most commonly observed sequence
of driver mutations in colorectal cancer has been optimized to
maximize the GPC. Our findings provide new insight into the
cooperative mechanism of multiple somatic mutations in color-
ectal tumorigenesis.

Results
Network propagation of somatic mutations and a GC. We
began by applying the network propagation20 to somatic muta-
tions from TCGA colorectal cancer patients on a PPI network (N
= 10,968) to spread the influence of each mutation over the
network neighborhood (see the Methods section). The network
propagation has been used to stratify cancer patients12, whereby
influence scores are assigned to every node such that the nodes
closer to a gene harboring a somatic mutation have higher scores.
Therefore, when a mutation occurs on a node, its nearest
neighbors have higher values, whereas nodes far away from the
mutated node have values near zero. Thus, mutation influence
appears to propagate along the PPI network. Indeed, it is expected
that a mutation could not successfully affect all the nodes but at
most cover a few layers of nearest neighbors. Thus, we can predict
an effective boundary of mutation influences centered on the
mutated node, inside which nodes have influence scores beyond a
certain threshold and form a sub-network that we call a “muta-
tion-propagating module” (Fig. 1a). In our study, we mapped
expression profiles of each patient to the PPI network to deter-
mine the weight of links, such that patient-specific PPI networks
were generated before projecting mutation profiles of patients to
the network (see the Methods section). When mutation profiles of
a patient are mapped to the patient-specific network, mutation-
propagating modules of individual mutations are scattered
throughout the network, often forming connected modules,
which are sub-networks influenced by two or more mutations.
Among them, the largest connected module, which we call “giant
cluster (GC)”, could largely cover the network in the order of
network size, N, and, therefore, could have a significant impact on
the network (Fig. 1a).

On the basis of this network propagation method, we first
investigated the GC size for each patient by projecting mutation
profiles to the respective PPI network. On average, the GC
covered a relatively large portion (20–40%) of the entire network,
although patients only have an average of 20–40 somatic
mutations. The threshold of mutation influences was selected to
be high, so that each mutation-propagating module approxi-
mately included only nearest neighbors (Fig. 1b). These indicate
that multiple somatic mutations interact cooperatively to enlarge
the effective boundary of mutation influences. To test whether
such cooperative effects in GCs come from nonrandom mutation
profiles, for each patient we compared the size Sgc of its GC with
the expected size Srandgc if the same number of mutations occurred
randomly on the network. Figure 1c illustrates that the GC size
for patients was significantly larger than the random expectation,
and such differences were prominent when the cancer-related
genes21 or driver genes8 were considered rather than all the
mutations (Supplementary Fig. 1). We also confirmed that the
statistical significance of this tendency continues in many cases of
different thresholds (Supplementary Fig. 2). Hence, these results
suggest that the cooperation among somatic mutations in cancer
cannot be attributed to a random selection of mutations but can
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be determined by topological properties of somatic mutations in
the PPI network.

We further investigated the formation of a GC for other type of
colon cancer (DFCI data set obtained from cBioPortal, n= 526)
22, 23 as well as eight other types of solid tumors (BLCA, BRCA,
HNSC, KIRC, LUAD, LUSC, PAAD, and STAD obtained from
TCGA). We compared the size of the GC between the colorectal
cancer patient and the random expectation for which the same
number of virtually mutated nodes as in each patient were
randomly generated in a repeated way (n= 1000), and the
averaged GC size was measured for each patient. Performing this
comparison clearly shows that colorectal cancer can be
characterized as having a significantly larger size of GC

(Supplementary Fig. 3, and see Methods). We also confirmed
that the statistical significance of this tendency was also observed
in the other types of cancer (Supplementary Fig. 3). As a result,
we validated our hypothesis of the formation of a GC in various
types of cancers.

Overlap and synergy between mutation-propagating modules.
We also asked if there is a relationship between the GC caused by
somatic mutations from cancer patients and network character-
istics of mutation pairs. We found that the average degree of
genes that harbor somatic mutations in patients was significantly
larger than that in random selection of nodes, whereas the
average shortest distance between mutation pairs in patients was
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Fig. 1 The cooperative mutation effects represented by a giant cluster upon a PPI network. a Formation of a giant cluster upon a PPI network by the
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considerably shorter than the random expectation (Fig. 2a, b and
Supplementary Fig. 4). It is probable that more neighbors of a
mutated node would contribute to forming a larger mutant-
propagating module. Moreover, the closer these modules are, the
larger a connected module will be, resulting in the larger GC, as in
Fig. 1c. To test this possibility, we introduced the overlap and
synergy between two mutation-propagating modules, A and B,
which are measured by the Jaccard index J ¼ SðAÞ \
SðBÞ=SðAÞ∪ SðBÞ and C ¼ SðA;BÞ=SðAÞ∪ SðBÞ, respectively
(Fig. 2c). The size of the GC would be maximized if and only if all
the pairs of mutation-propagating modules overlapped (J> 0)
and their connected module also exhibited beyond the full cov-
erage (C> 1), i.e., synergistic. We investigated the ratio of over-
lapped (J> 0) or synergistic (C> 1) pairs in each patient and
found that the distributions of both ratios for patients shifted

toward higher ratios compared to the randomly selected mutation
sets (Fig. 2d), indicating that the larger GC for patients could
possibly be attributed to either overlapped or synergistic mutation
pairs. We also found that, for most patients, more than half of the
mutation-propagation module pairs (55–70%) were synergistic,
whereas relatively few pairs (10–20%) overlapped. To test whe-
ther this tendency was also observed in co-occurring mutation
pairs across samples, we identified 479 mutation pairs with sta-
tistically significant co-occurrence among 382 driver genes from
Vogelstein8 (see the Methods section for details). Figure 2e shows
that the fraction of overlapped and/or synergistic co-occurring
pairs was significantly larger than expected by chance, and nearly
half of the co-occurring pairs were not overlapped but synergistic,
which is consistent with the previous studies in which co-
occurring mutated genes participate in different signaling
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pathways3, 4, 10. Altogether, these results suggest that somatic
mutations occur to minimize the overlap among mutation-
propagating modules with the constraint under which the cov-
erage of connected modules is maximized.

Hallmark gene sets enriched in the GC. If a GC comes from
nonrandom mutation profiles of a cancer patient, genes within
the GC must be correlated with any relevant biological and
clinical characteristics of the cancer patient. To investigate which
biological processes are inherent in the GC, we used a collection
of 50 “hallmark” gene sets24 (Supplementary Table 1) derived
from the Molecular Signature Database (MSigDB) and identified
hallmark gene sets enriched in the GC. We hypothesized that the
cooperation of multiple somatic mutations in a GC can activate
multiple cancer-related hallmarks that can cooperatively enhance
tumorigenesis. For instance, the co-occurrence of a mutation that
persistently activates a proliferative signaling and another muta-
tion that induces invasion and metastasis will promote cancer
malignancy. Therefore, it is important to find what kind of
multiple hallmarks of cancer are enriched in a GC and more
importantly, to find whether such phenotypic features have a real
biological significance. In this respect, we attempted to interpret
the phenotypic features contained in the GC with respect to the
classification of tumors such as the consensus molecular subtypes
(CMSs)25 of colorectal cancer or tumor stages of cancer patients.

First, we examined how well the GC-based patient classifica-
tion matches the previous CMS classification that is known to be
the most robust molecular classification currently available for
colorectal cancer25 and further investigated, which key biological
features the subtypes have (Fig. 3 and Methods). By propagating
all of the mutations of each colorectal cancer patient, we obtained

a gene list included in the corresponding GC and estimated the
enrichment of the hallmark gene sets in each patient through the
hypergeometric test. To reduce the dimensionality of the resulting
matrix of the hallmark gene set enrichment test (191 patients × 50
hallmark gene sets), we did factor analysis, which is often used in
gene expression data for patient clustering as a robust feature
selection method26, 27 using standardized z-scores of −log(p-
value) for each hallmark gene set because the hallmark gene set
variables have different scales. For an optimal predefined factor
number (k= 5) (Supplementary Fig. 5a and see Methods for
details), the correlation matrix of the hallmark gene sets were
clustered into four global factors (Supplementary Fig. 5b, and see
Supplementary Data 1 for various factor numbers, k= 3, 4, and 5)
each of which can be characterized with several hallmark gene
sets for a conventional weight threshold of 0.5: Factor 1 for
angiogenesis and the metastasis pathway, Factor 3 for the
immune response, Factor 4 for the Myc pathway and uncon-
trolled proliferation, and Factor 5 for the metabolic pathway
(Fig. 4a). Interestingly, these factors not only contain important
features related to cancer cells but also are very similar to the
biological characteristics that distinguish each CMS group25.
Factors 1, 3, 4, and 5 correspond to the characteristics of CMS4
(mesenchymal), CMS1 (MSI (microsatellite instability) immune),
CMS2 (canonical), and CMS3 (metabolic), respectively. To
investigate whether cancer patients can be classified into the
CMS group by these factors, we performed statistical clustering
(k-means) analysis on the factor scores of the patients. The result
shows that the patient population can be clustered into four
clusters, and interestingly, each cluster is strongly correlated with
a distinct CMS group (Cluster 1—CMS2, Cluster 2—CMS4,
Cluster 3—CMS1, and Cluster 4—CMS3) (Fig. 4b). For a
biological understanding of the cluster groups, we then examined
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which Factors are dominant in each cluster (Fig. 4c) and
compared the results with the biological signatures of the CMS
groups25. Cluster 1 was mainly characterized as Factor 4 (Myc
pathway and uncontrolled proliferation) and Factor 5 (metabolic
pathway), while Factor 1 (angiogenesis and metastasis pathway)
and Factor 3 (immune response) had a relatively low significance,

which is in good accordance with the biological characteristics of
the CMS2 group except for Factor 5. Cluster 2 was mainly
characterized as Factor 1 (angiogenesis and metabolic pathway)
but not as Factor 4 (Myc pathway and uncontrolled prolifera-
tion), and Factor 5 (metabolic pathway). These features are very
similar with the biological signatures found in CMS4, which
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showed epithelial–mesenchymal transition-related signatures, but
have less statistical significance with the signatures associated
with Wnt and Myc targets, cell cycle, or metabolism. Cluster 3
was mainly characterized as Factor 3 (immune response) which is
a key biological feature of the CMS1 group. Cluster 4 is mainly
characterized as Factor 5 (metabolic pathway), which is in
agreement with the enrichment of the metabolism signatures in
CMS3. Taken together, our GC-based hallmark gene set analysis
enables colorectal cancer patients to be clustered into informative
subtypes for which biological features well match those of the
previous CMS groups. Although extracted biological features of
the GC depend on the threshold of mutation influences
(Supplementary Figs. 6 and 7), we could confirm that the GC
caused by somatic mutations of cancer patients is a biologically
meaningful network index that represents a biological state or
process during the development of cancer. Indeed, because most
cancers have mutations in cancer-inducing genes, it is possible
that cancer-related hallmark gene sets enriched in the GC come
from such genes. However, when we applied the network
propagation to only cancer-related or driver genes rather than
all of the mutated genes of each patient and then executed the
hallmark gene set analysis with varying thresholds, most of the
hallmark gene sets that are associated with cancer progression or
the CMS groups were not enriched in patients (Supplementary
Figs. 8–13). These results suggest that the cooperative effect of
multiple somatic mutations, including driver as well as passenger
mutations, is critical in colorectal cancer progression.

Second, to investigate whether the hallmark gene sets enriched
in cancer patients correlate with clinical tumor stages, we
performed statistical clustering analysis of the enrichment score
of the hallmark gene sets for cancer patients according to the
significant hallmark gene sets. Twelve significant hallmark gene
sets were selected to distinguish the tumor stages of cancer
patients using the Minimum Redundancy Maximum Relevance
(mRMR) feature selection28, 29, an algorithm often used to
identify relevant features that are mutually far apart while having
a high correlation with the classification variable, for example, the
tumor stage in this study (see Methods for details). The result
revealed that the patient population can be divided into five
clusters, and three clusters are strongly correlated with different
tumor stages (Cluster 1—stage 3, Cluster 4—stage 2, and Cluster
5—stage 1), although 48 patients in Clusters 2 and 3 do not show
any correlation with the tumor stage (Fig. 4d). Interestingly, the
enrichment of a few hallmark gene sets is significant in each
cluster associated with tumor stage, and there are biologically and
clinically meaningful relationships between the tumor stages and
hallmark gene sets: DNA_REPAIR in stage 1, WNT_BETA_CA-
TENIN_SIGNALING, NOTCH_SIGNALING, and APICAL_-
JUNCTION in stage 2, and UNFOLDED_PROTEIN_RESPONSE
and P53_PATHWAY in stage 3 (Fig. 4e, f), indicate that there
exist tumor stage-specific hallmark gene sets that are enriched in
the GCs of cancer patients. In the early stage of cancer, cancer
cells are often initiated by genomic instability due to the

dysfunction of DNA repair proteins, and become larger through
hyperproliferation. Thus, they start to spread into nearby tissues
or lymph nodes when entering the late stages. Our results also
show such phenotypic changes according to tumor progression
(Fig. 4g). A patient cluster characterized as stage 1 tends to show
enrichment of the gene set related to DNA repair, which is known
to cause genomic instability in the early stage of colon cancer30, 31.
A patient cluster characterized as stage 2 shows enrichment of the
gene set related to the Wnt/β-catenin and Notch signaling
pathways, both of which cooperatively control cell proliferation
and tumorigenesis in the intestine32. A patient cluster character-
ized as stage 3 shows enrichment of the gene set related to the
unfolded protein response, which induces metastasis through
hypoxic activation33, 34, and p53 signaling which influences
metastasis by the dysfunction of p5335. These results also confirm
our hypothesis that the formation of a GC implies the co-
activation of multiple hallmark gene sets that are crucial for
tumorigenesis. Taken together, we conclude that cancer patients
could be classified into several subtypes according to a few
hallmark gene sets involved in the tumor stages, consequently
suggesting that the GC conveys biologically and clinically relevant
phenotypes.

We further investigated whether the immune score based on
the hallmark gene set analysis is well distinguishable between MSI
and MSS (microsatellite stable) patients. For this, we introduced
three immune scores that are defined with the statistical
significance of specific hallmark gene sets associated with
immune response, such as the immune process category from
MSigDB, the immune response factor from our factor analysis,
and carefully selected hallmark gene sets that are considered
essential for the immune response. The immune scores that we
defined show a statistically significant difference between the MSI
and MSS patients (Supplementary Fig. 14 and see Methods),
compared to the groupings based on several estimates related to
immune response or tumor purity. Therefore, our results indicate
that the immune scoring system based on the hallmark gene set
can discriminate MSI and MSS colon cancer patients, confirming
that the phenotypic features inherent in the GC have a real
biological significance.

Percolation transition of a GPC. The giant component of a
random network in percolation theory refers to a largely con-
nected cluster that undergoes the sudden transition from small
and disconnected clusters by the gradual addition of links36. The
existence of such a large-scale connectivity is very important in
real-world networks. Largely connected clusters in the global
airline network or traffic network are essential for efficient
transportation, whereas a well-connected social or computer
network can be badly utilized for virus spreading. Emergence of
such a percolating cluster in physical networks often indicates
that the system goes through a percolation transition, where
significant changes may occur in the physical properties of the

Fig. 4 Patient classification and biological interpretation of the patient clusters. a The correlation matrix of the hallmark gene sets was clustered into four
global factors with biological characteristics. Each bar indicates the loading strength of a hallmark gene set in each factor. Blue (red) bars represent positive
(negative) values, and absolute values were used for the negative values. b The four clusters were classified with statistical clustering (k-means) analysis of
the factor scores of the patients. The hypergeometric test was performed to examine the statistical significance of the enrichment of individual CMS groups
in each cluster. c Biological interpretation of the clusters with the identified Factors, each of which corresponds to a biological signature of a CMS group.
The distribution of the Factor scores of the patients in one cluster was compared to that of the other remaining clusters. p-values were obtained by
performing the Wilcoxon rank-sum test. d Distribution of the tumor stages in each cluster. Red asterisks indicate statistical significance (hypergeometric
test, p< 0.05). e Comparison of average values of −log (p-value) of each cluster in individual significant hallmark gene sets. f Comparison of the statistical
significance (−log (p-value)) of three clusters in each significant hallmark gene set. Red asterisks indicate that there are significant differences in the
statistical test results between a group with the highest value and the other two groups (Wilcoxon rank-sum test, p< 0.05). Error bars indicate the
standard error. g Summary of the relationships between the hallmark gene sets and the tumor stages in the individual cluster
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system. For instance, in a lattice network that consists of con-
ducting and non-conducting subunits between metallic plates, the
electrical current can flow through the percolating conducting
subunits above, but not below, the percolation threshold37. In our
work, scattered, mutation-propagating modules formed a GC in a
PPI network; more importantly, genes within the GC represented
the phenotypic properties of cancer, including cell proliferation
and metastasis. Therefore, in the context of percolation phe-
nomenon, we propose that the GC resulting from somatic
mutations of a cancer patient could be referred to as a ‘‘giant
percolated cluster’’ (GPC), which is the largest percolating cluster
that integrates the influences of scattered somatic mutations so
that it confers phenotypic changes corresponding to cancer
hallmarks. Then, one fundamental question naturally arises:
whether the GPC, in reality, would undergo a percolation tran-
sition on the accumulation of somatic mutations during cancer
progression.

To address this question, we hypothesized that the dynamic
behavior of the GPC in tumorigenesis would depend on detailed
selection rules of somatic mutations, where the accumulation of
somatic mutations, corresponding to the gradual addition of links
in the percolation study of a random network, can be considered
as a discrete time axis. We introduced three different selection
rules to determine which somatic mutation would be added
during cancer progression. We then simulated changes in the size
of the GPC by adding a somatic mutation selected from among
the mutation profiles of cancer patients according to the rules at
each evolution step (Supplementary Fig. 15 and see Methods for
further details). The first selection rule was designed to minimize
the overlap between mutated genes; in this way, cancer
progression could be suppressed by preventing the cooperation
between somatic mutations (Fig. 5a). Therefore, a somatic
mutation added at the next time step minimized the degree of
overlap with previous mutations, where the degree of overlap
between a pair of somatic mutations was defined as high when
they had high node degrees and were interconnected by short
network distances (Supplementary Fig. 16). The second selection
rule was to select the next mutated gene such that the size of the
connected module between a pair of mutation-propagating
modules was maximized (Fig. 5b), which represents the
mechanism facilitating cancer progression by maximizing the
cooperative effect of somatic mutations. In contrast, the last
selection rule was to select the next mutated gene, minimizing the
size of connected modules, among mutation candidates in which
their mutation-propagating modules overlapped with those of
previously mutated genes, J> 0 (Fig. 5c). This rule describes two
opposite or contrary driving forces in the development of cancer.
One is regarding the suppressive process that prevents cancer
progression by minimizing the cooperation of somatic mutations,
and the other is regarding the process that promotes cancer
progression by ensuring connections with any previously mutated
genes.

On the basis of these rules, we identified all available mutation
sequences from mutation profiles of colorectal cancer patients
and investigated the order of pairs of key driver mutations
frequently found in colorectal cancer, including APC, TP53,
KRAS, PIK3CA, and SMAD45–8. Interestingly, the order of driver
mutations tended to follow the well-known sequence of driver
mutations when the first rule, which suppresses the overlap
between a pair of mutations, was applied (Fig. 5d). APC
mutations occurred ahead of other driver mutations; TP53
mutations always occurred as the last event among driver
mutations; KRAS mutations was earlier events than TP53,
PIK3CA, and SMAD4; and both PIK3CA and SMAD4 mutations
occurred earlier than TP53, with high probabilities. In contrast,
the second rule designed to maximize the size of connected

modules was found to mostly induce the opposite order (Fig. 5e).
We also found that the last rule, which is involved in both cancer
promoting and suppressive processes, determined a similar order
of driver mutations as the first rule (Fig. 5f). Given that most
early-stage colonic adenomas exhibited genetic alterations in
APC7, and most colorectal cancer patients with only a single
driver mutation had APC mutations (Supplementary Fig. 17),
these relationships between early and late mutation events can be
reorganized into the complete mutation sequences available from
APC to TP53 (Fig. 5g), confirming the most commonly observed
sequences of driver mutations, e.g., APC→ KRAS→ PIK3CA→
TP53 and APC→ KRAS→ SMAD4→ TP536, 38. With these
various sequences of somatic mutations determined by different
selection rules, we further investigated the changes in GPC size
along with the accumulation of somatic mutations in each
patient. Intriguingly, we found a surprising result that the GPC
size under the second rule increased at a relatively early stage,
whereas the onset of the GPC could be delayed in the first and last
rules, and the mutation sequence frequently found in colorectal
cancer, e.g., APC→ KRAS→ SMAD4→ TP53 in this patient,
induced a dramatic increase in the GPC size (Fig. 5h). These
results indicate that, although the most commonly observed
sequence of mutations in colorectal cancer is determined by the
mechanism that suppresses the cooperative effect among
mutations, such a sequence finally accelerates the increase in
the size of the GPC to maximize the cooperative effect, therefore
inducing the sudden transition during the development of cancer.
Furthermore, we also found that the system can undergo a
percolation transition in which the size of the GPC under the last
rule was suddenly increased compared to random selection,
showing gradual increases of the GC (Fig. 5h). Taken together,
our results have substantial implications for understanding the
evolutionary process of tumorigenesis: (i) the GPC caused by
cooperative effects of somatic mutations could undergo a
percolation transition in colorectal tumorigenesis through the
interplay between cancer suppressive mechanisms that minimize
their cooperation and cancer promoting mechanisms that
increase the size of the GPC, and (ii) the most commonly
observed sequence of driver mutations in colorectal cancer could
be essential for the sudden transition during tumorigenesis,
consequently leading to the maximization of GPC size. This
tendency was also observed in most patients who had few driver
mutations (Supplementary Figs. 18 and 19), suggesting that the
cooperation of passenger mutations as well as driver mutations
may play an important role in inducing the percolation transition,
even in colorectal cancer patients with few driver mutations.

Discussion
Tumorigenesis is an evolutionary process in which the transition
of a normal cell to a cancer cell is mediated by the accumulation
of somatic mutations39, 40. In this process, the transition might
not be gradual; not all of the somatic mutations directly con-
tribute to the development of cancer, which is usually initiated
after sufficient accumulation of mutations. Moreover, previous
studies have shown that half or even more of the somatic
mutations observed in cancer of self-renewing tissues actually
occur before tumor initiation40, and sequential accumulation of
driver mutations accompanied by APC is required for the onset of
colon cancer in many cases6, 38. Altogether, these suggest that a
critical transition might be an intrinsic feature of the cancer
evolutionary process. In this study, we found that a GC, the
cooperative mutation effects represented by a large connected
component upon a PPI network, might undergo a percolation
transition during tumorigenesis. In normal tissue development, a
number of somatic mutations can occur at various places in the
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Fig. 5 Percolation transition of a GPC. a A mutation selection rule for minimizing the degree of overlap between somatic mutations (see Methods and
Supplementary Fig. 16 for details). The rule is to select a mutation candidate j that minimizes the sum of overlap measures between j and all the previously
mutated ones. b A mutation selection rule for maximizing the size of connected modules. The rule is to select a mutation candidate j that maximize the sum
of S(i, j) for all the previously mutated ones. For instance, node j= 2 will be selected as the next mutation because S(i= 2, j= 2) is larger than S(i= 1, j= 1)
in the figure. c A mutation selection rule for minimizing the size of connected modules with the constraint that two modules of j and a mutated one i should
overlap, J(i, j)> 0. For instance, node j= 1 will be selected as the next mutation because S(i= 1, j= 1) is smaller than S(i= 2, j= 2) in the figure. By applying
the rules to the mutation profiles of individual patients, we obtained totally 3834 mutation sequences according to which mutation was selected as a seed.
By investigating the order of a pair of driver mutations in the resulting mutation sequences, we constructed a matrix showing the number of mutation
sequences that one driver mutation in a row occurs earlier than the other driver mutation in a column according to the first d, second e, and the last f rules.
The bottom figures represent possible orders of driver mutation pairs with significant percentages (80–100%) in the respective rules. g All available
mutation sequences from APC to TP53 from the result of f. Red asterisks indicate the most commonly observed sequences of driver mutations in colorectal
cancers. h The changes in the size of the GPC along with the accumulation of somatic mutations according to the rules, as an example, for a patient who
has four driver mutations, APC, KRAS, SMAD4, and TP53, among 29 somatic mutations (see Methods for details). Driver mutations are denoted by circles
at the corresponding order of occurrence of mutations in each rule. For comparison of the rules and the random expectation, we generated 100 mutation
sequences among 29 randomly selected genes
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PPI network, and the resulting mutation-propagating modules
can form a connected module or develop a GC along with the
accumulation of somatic mutations. In this process, tumorigen-
esis can be initiated by a certain driver mutation that connects
scattered clusters into one, leading to the formation of a GPC that
represents cancer hallmarks (Fig. 6). Intriguingly, we found that
the most frequently observed sequence of driver mutations
characterizing colorectal cancer development might have been
optimized to maximize the GPC. This finding provides novel
insight into the relationship between cancer development and
percolation transition, which can be useful for understanding the
fundamental mechanism of tumorigenesis and further identifying
new drug targets for anti-cancer therapy by interfering with GPC
formation.

An interesting observation of our work is that the hallmark
gene set analysis based on the GPC can extract all the features of
the CMS groups, such as immune responses, proliferation,
metabolism, and metastasis even though factor analysis was used,
which is a type of unsupervised learning for feature selection or
for data reduction. Moreover, the patient classification with these
selected features shows very strong correlations with the CMS
groups. There might be a few major reasons why our analysis
based on somatic mutation profiles shows a consistent result with
the CMS grouping derived from the gene expression profiles.
First, we considered somatic mutations which are tumor-specific
genetic changes, unlike germline mutations. Therefore, we were
able to exclude some external factors that may be unrelated to
cancer. Second, by considering the mutation influence on the PPI
network, we were able to extract genes that might have influences
on their expression levels by somatic mutations. A recent study
suggested that mutation patterns correlate with global gene
expression levels, and co-occurring driver mutation pairs tend to
induce greater degrees of overlap in downstream transcriptional
changes41. Our result shows that considering cancer-related or
driver mutations alone could not capture all the features of the
CMS groups (Supplementary Figs. 8–13), suggesting that the so-
called passenger mutations will also have important roles in
determining the functional activity of genes that are related to
tumor progression. Third, the biased propagation of
mutation influences based on a patient’s gene expression profile
better reflects the current state of the patient. Fourth, the intro-
duction of an appropriate threshold to mutation influences
enables us to determine an optimal gene set that can capture
the inherent characteristics of cancer. Taken together, our
results imply that a set of essential genes contained in the GPC
obtained from the network propagation of somatic mutations can
capture the important cancer-related features in the gene
expression.

Considering the functional consequences of somatic mutations
in cancer under the molecular network framework can be a
promising strategy for not only understanding the cooperative

effects of multiple somatic mutations during tumorigenesis but
also for identifying optimal targets for anti-cancer therapies. In a
recent study by the Ideker Lab12, have successfully stratified
cancer patients based on a network propagation method. How-
ever, this network-based analysis differs from ours in many
respects, especially in examining the dynamical change of coop-
erative mutation effects in tumorigenesis. First, we focused on an
effective boundary of mutation influences around the mutated
nodes and thus, could extract a sub-network for a mutation or a
giant component for multiple mutations. Although the influence
scores for a mutation can be assigned to all the nodes in the PPI
network as in the study by Hofree et al., the mutation could not
successfully affect the entire network but could at most cover a
few layers of the nearest neighbors. Therefore, by considering
such an effective boundary, we were able to obtain a GPC for the
mutation profile of each patient and further confirmed the critical
transition of the GPC during the development of cancer. Second,
in addition to the mutation profile, the gene expression data of
patients were also reflected in the PPI network, thereby obtaining
the patient-specific network. Third, by spreading the influence of
somatic mutations over the patient-specific network, we were able
to extract key phenotypic characteristics that can explain the
cancerous state of each patient and to observe phenotypic
changes during the cancer development.

Our study showed that driver mutations are essential for
triggering the onset of the GPC and also showed the significance
of the cooperation of somatic mutations, including those not
considered to directly affect tumorigenesis. All the biological
features of the CMS groups were not enriched in GPC when only
cancer-related or driver mutations were considered (Supple-
mentary Figs. 8–13). Moreover, most cancer patients showed the
percolation transition (or similar behavior), even in cases when
they had only a few driver mutations (Supplementary Figs. 18 and
19), implying that the cooperative effect of driver and passenger
mutations might play an important role in the development of
cancer. Although many passenger mutations do not directly
contribute to tumorigenesis, our results showed that the mutation
effects of various passenger mutations found in individual cancer
patients can converge to several cancer-related signaling pathways
in which driver mutations occur, leading to the formation of a
GPC and eventually contributing to tumorigenesis.

The accumulation of mutations in tumorigenesis causes a
cancer to diverge into different clones, resulting in subclonal
diversification of the tumor cells42, 43. Recent studies in breast
cancer42 and 12 different types of cancers from the pan-cancer
analysis44 showed that the mutation profiles can be very different
among the subclones. Multiregion sequencing studies have also
shown that differential mutation profiles exist across the sub-
regions in some tumor samples, although some driver mutations
are shared in different subclones43, 45. Therefore, we can predict
that the formation of a GPC will be affected by the tumor
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Fig. 6 A schematic of a percolation transition of cooperative mutational effects during tumorigenesis
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heterogeneity because the formation of a GPC is determined by
the mutation profile of a cancer. To explore this, we further
investigated whether the GPC size depends on the tumor het-
erogeneity by using the mutation profiles obtained from the
multiregion biopsies of the primary regions from colorectal
cancers with whole-exome sequencing46. The result suggested
that as the tumor heterogeneity of a bulk tumor increases, the
effect on the formation of the GPC becomes larger (Supple-
mentary Fig. 20 and see Methods). If whole-exome sequencing of
individual subclones is publicly available, we can analyze both the
GPC for each subclone and the cancer hallmarks contained
within it, which will provide further insight into understanding
tumor heterogeneity and cancer evolution.

By illuminating the GPC, which represents the cooperative
effects of the somatic mutations in cancer, our results suggest that
identifying optimal targets to fragment the GPC into small pieces
can provide a novel therapeutic strategy for the treatment of
cancer. The fragmentation of GPC for the cancer treatment not
only means breaking the network of the GPC itself, but it also
means interfering with cancer-related phenotypes, such as cancer
hallmarks, inherent in the GPC. For instance, if a cancer patient
has a metastasis-related hallmark enriched in the GPC, we can
select minimal targets that can break the GPC among the gene list
related to that hallmark. Most cancers have multiple cancer
hallmarks that can cooperatively promote tumorigenesis. Thus,
we can consider some drug combinations, for example, one that
interferes with the uncontrolled proliferation-related hallmark
and the other that inhibits the metastasis-related hallmark. In
recent studies on the percolation transition, there has been great
interest in controlling the location of the percolation transition to
delay its onset47, 48. Most mutation profiles of cancer patients
available from databases, such as TCGA, only convey information
regarding the final state, long after the onset of a GPC through
cancer progression. Therefore, mutation profiles from the cancer
database are not sufficient to develop a fundamental therapeutic
strategy that can defer the onset of a GPC. Hence, the develop-
ment of a mathematical model49 that describes the evolutionary
process of tumorigenesis along with the accumulation of somatic
mutations may help reveal how to control the complex molecular
regulatory network by identifying minimal and optimal inter-
vention points to delay the onset of a GPC50. This can ultimately
offer further insights into the development of human cancer and
provide new opportunities for developing molecular therapeutics
of a different concept.

Methods
Description of a PPI network and patient mutation profiles. Somatic mutation
data for colorectal cancer patients were obtained from the Firehose website (http://
gdac.broadinstitute.org/runs/analyses__2014_04_16/reports/cancer/COADREAD-
TP/MutSigNozzleReportCV/COADREAD-TP.final_analysis_set.maf). We first
converted the genomic coordinates of the mutations to the hg19 assembly of the
Human Reference Genome with the Liftover program (http://genome.ucsc.edu/cgi-
bin/hgLiftOver) and then re-annotated with the Ensembl database using Anno-
var51. To retain only high-confidence pathogenic variants, mutations were filtered
based on their predicted pathogenicity derived from five functional mutation
prediction tools using Annovar. For nonsynonymous SNV, we included mutations
that fulfilled at least two of the following five conditions: (i) SIFT52 prediction class
with ‘‘deleterious’’; (ii) Polyphen2 HVAR53 with ‘‘probably damaging’’ or ‘‘possibly
damaging’’; (iii) MutationTaster54 with ‘‘disease causing automatic’’ or ‘‘disease
causing’’; (iv) MutatonAssessor55 with ‘‘high’’ or ‘‘medium’’; (v) CADD56 Phred-
score with 20 (top 1% of predicted damaging effect). For other mutation classes, we
only considered stopgain, frameshift deletion, frameshift insertion, and frameshift
substitution as pathogenic. To construct patient mutation profiles, we assigned the
filtered genomic mutations to tumor samples by abstracting binary event calls such
that a genomic event either occurred (‘‘1’’) or did not occur (‘‘0’’) in a gene for a
given sample. We selected patients having less than 300 mutations from the 223
TCGA colorectal cancer patients to discard outliers having a very high number of
mutations that result in a GPC covering the entire network, which left 198 patients.
The expression data for colorectal cancer patients were downloaded from the
Firehose website (http://gdac.broadinstitute.org/runs/stddata__2014_04_16/data/

COADREAD/20140416/gdac.broadinstitute.org_COADREAD.
Merge_rnaseqv2__illuminaga_rnaseqv2__unc_edu__Level_3__RSEM_genes_nor-
malized__data.Level_3.2014041600.0.0.tar.gz). Among them, 191 cancer patients
for whom both mutation and expression profile information were available were
selected. Patient information that includes the tumor stages, CMS, and MSI/MSS
information of the data set we used was provided (Supplementary Data 2). The PPI
network (N= 12,233) was previously constructed from STRING v9.0 by Hofree
et al.12. We considered only the largest connected subnetwork (N= 12,071), due to
the fact that network propagation is not available between a pair of nodes that does
not connect with each other either directly or indirectly. By integrating the
expression and mutation profiles of 191 cancer patients with the PPI network, we
finally obtained the adjacency matrix of the PPI network (N= 10,968) and a
patient-by-gene matrix that displays the mutation profiles of binary (1, 0) states on
10,968 genes for 191 patients. Somatic mutation data and RNA-seq gene expression
data for breast invasive carcinoma (BRCA), bladder urothelial carcinoma (BLCA),
head and neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma
(KIRC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC),
pancreatic adenocarcinoma (PAAD), and stomach adenocarcinoma (STAD) were
downloaded from the Firehose data run (https://confluence.broadinstitute.org/
display/GDAC/Dashboard-Stddata). For our analysis, we only considered samples
that had both RNA-seq and somatic mutation data. The somatic mutation data
from the Dana-Farber Cancer Institute (DFCI) were downloaded from the cBio-
Portal website22, 23. To retain only high-confidence pathogenic variants, mutations
were filtered based on their predicted pathogenicity derived from five functional
mutation prediction tools using ANNOVAR. The DFCI data set was used, which
includes the somatic mutation profiles for a large population of patients but lacks
the gene expression information. To compensate for the lack of gene expression
information, the average expression profile of the TCGA colorectal cancer patients
was used to extract the colon cancer specific average PPI network.

Requirements for data sets. In our study, we first mapped the gene expression
profiles of individual patients to a large-scale PPI network to obtain patient-specific
PPI networks and then, projected the somatic mutation profile of an individual
patient to each network to explore phenotypic features embedded in the GPC. For
this approach, there are three requirements for data sets. First, the data set should
include both gene expression and somatic mutation profiles of colorectal cancer
patients. Second, massive somatic mutations identified by whole-exome sequencing
are required for the GPC analysis. One of the important implications of our
findings is that although driver mutations are essential for triggering the onset of
the GPC, passenger mutations also contribute to the formation of the GPC and
eventually to the development of cancer. Therefore, a mutation data set profiled by
whole-exome sequencing is more suitable for this study than a data set obtained by
targeted-exome sequencing, which is often used for identifying specific mutations
related to cancer. Third, the data set should include clinical outcomes such as
tumor stages. Thus, based on these requirements, we chose from among the many
genomic data sets TCGA data not only because it is the largest publicly available
database for cancer-genomic studies, but also because it provides both messenger
RNA and whole-exome sequencing data in addition to clinical information on the
cancer patients. As a result, from the TCGA colorectal cancer data set, we obtained
gene expression data for 263 patients and somatic mutation data for 223 patients.
By examining the distribution of the number of mutations, we found that there are
a few patients with a very large number of mutations (Supplementary Fig. 21).
Considering that the GPC size of those patients having about 200 mutations
already reaches about 80% of the entire network (Supplementary Fig. 2), it is
evident that the GPC of patients having more than 300 mutations will cover the
entire network. Hence, such cases will make it difficult to extract any statistically
significant hallmark gene set. For this reason, patients with more than 300
mutations were excluded, resulting in 198 patients. Among those, 191 cancer
patients for which both mutation and expression profile information are available
were finally selected.

The lists of cancer-related genes. A typical tumor contains several cancer genes
that can promote tumorigenesis. To investigate the functional consequences of the
network propagation with cancer gene mutations, we extracted the cancer gene list
in each cancer patient by using two collections of cancer-related genes. One is a list
of 2102 cancer genes collected by Bushman Lab21 (http://bushmanlab.org/links/
genelists), which was obtained as a union of eight different data sets. Among them,
we used 1687 cancer genes that intersected with the PPI network. Cancer genes
comprised approximately 20–25% of all mutated genes in each patient. The other
collection was a 418 cancer driver gene list, which was reported in a publication by
Vogelstein and collaborators8. Among them, we used 382 cancer driver genes that
intersected with the PPI network and that constitute approximately 5–10% of all
the mutated genes in each patient.

Network propagation of mutation effects. To simulate the propagation of
mutation effects through the PPI network, we employed the network propagation
method20, which describes a random walk with restart on a network. When a
mutation occurs on a gene in a PPI network, a value ‘‘1’’ is initially assigned to the
mutated gene. It then propagates along the network neighborhood such that higher
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values are assigned to non-mutated genes that are closer to the mutated gene,
according to the following equation:

Ftþ1 ¼ αA0Ft þ 1� αð ÞF0;

where F0 denotes a matrix of binary (1, 0) states on genes, in which a ‘‘1’’ or ‘‘0’’
indicates whether a gene is mutated or not in the corresponding patient, A′ denotes
a degree-normalized adjacency matrix of the PPI network, and α determines the
degree of diffusion of a mutation influence throughout the network. We used an
optimal value (α= 0.7) for the network constructed from STRING v9.0, which
were also used in a previous study by Hofree et al.12. In our study, changing α has a
similar effect to changing the threshold V of the mutation influences with respect to
the formation of a GC. As α increases for a fixed value of V (or V decreases for a
fixed value of α), the size of the resulting GC increases. We considered the cases of
various thresholds with a fixed value of α in the analysis of both the GPC and the
hallmark gene set (Supplementary Figs. 2, 6, and 7), and confirmed that the main
results do not change significantly. Here, the link weight of A′ is normalized by the
degrees of its end-points. Therefore, we set A0 ¼ D�1=2AD�1=2 where a diagonal
matrix D is defined such that D(i, i) is the sum of row i of an adjacency matrix A of
the PPI network. An element of the adjacency matrix, Aij, represents the probability
of an interaction between node i and j, along which the mutation influence pro-
pagates. Although two cancer patients have the same mutation profile, their
resulting expression profiles must be completely different from each other.
Therefore, we assumed that the probability of interaction between gene i and j in a
given sample is proportional to the product of expression values of both genes in
that sample and used an alternative to the adjacency matrix as Aij ! AijEiEj , where
Ei indicates the expression value of gene i. By integrating expression profiles of each
patient with the PPI network, we obtained a patient-specific PPI network, conse-
quently enabling the implementation of more realistic propagation of somatic
mutations on the patient-specific PPI network.

Identification of co-occurring mutation pairs. To identify co-occurring mutation
pairs among 382 cancer driver mutations, we calculated the odds ratio for each pair
of driver mutations and estimated the statistical significance using the Fisher’s
exact test. The odds ratio is given by the simple equation OR= (A·D)/(B·C), where
A= number of patients altered in both genes, B= number of patients altered in
gene 1 but not gene 2, C= number of patients altered in gene 2 but not gene 1, and
D= number of patients altered in neither gene22. Two-sided Fisher’s exact test was
used to produce p-values, and only p < 0.05 was considered significant. OR> 1
indicates co-occurring mutation pairs, whereas OR< 1 implies mutually exclusive
mutation pairs. We identified 479 co-occurring and 14 mutually exclusive mutation
pairs with statistical significance.

Identification of biological features by the factor analysis. To explore the
biological functions that are enriched in the GC of each patient, we examined the
enrichment of hallmark gene sets by hypergeometric test. For a gene list included in
the GC, let h be the number of genes annotated to a certain hallmark gene set, and
let N and g be the network size and the number of genes in the GC, respectively.
Suppose that the GC has x genes annotated to this hallmark gene set, we can model
x by a hypergeometric distribution under the null hypothesis that a gene annotated
to the hallmark gene set and a gene in the GC are independent events. Then, the p-
value that measures the significance of enrichment is the probability of observing x
or more genes annotated to the hallmark gene set in the GC,

p�value ¼
Xminðh;gÞ
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By estimating all the enrichment of the hallmark gene sets for each patient, we
obtain a resulting matrix (191 patients × 50 hallmark gene sets). Factor analysis was
used to reduce the dimensionality of the resulting matrix. The elements of the
matrix were transformed into standardized z-scores of −log (p-value) for each
hallmark gene set to minimize the different scales between the hallmark gene sets.
We determined the range of the optimal factor numbers that satisfy both Kaiser’s
rule57 (i.e., all factor numbers should have eigenvalues > 1) and the parallel analysis
threshold58 (i.e., all factor numbers obtained from the parallel analysis should have
eigenvalues that are greater than those from the factor analysis) (Supplementary
Fig. 5a). We used in this study an optimal factor number, k= 5 (see Supplementary
Data 1 for other factor numbers). By performing the factor analysis using the
optimal values obtained, two matrices were obtained: a loading matrix (Fig. 4a)
representing the weight values of the hallmark gene sets for each factor, and a
factor score coefficient matrix representing the weights of the identified factors in
each patient. Each factor can be characterized with the hallmark gene sets that
exceed a typical weight threshold of 0.5 in the loading matrix (Fig. 4a). With the
factor score coefficient matrix, we carried out the k-means clustering to see which
CMS groups are enriched in the clusters (Fig. 4b). To find out the biological

characteristics of each cluster, the statistical significance was assessed for the factor
scores of a cluster compared to those of other clusters in each factor.

Patient classification by the mRMR feature selection method. By using the
mRMR feature selection method28, 29, several significant hallmark gene sets can be
selected to discriminate tumor stages of cancer patients. The mRMR method is an
algorithm often used to identify relevant features that are mutually far apart while
having a high correlation with the classification variable, for example, the tumor
stage in this study. The elements of the matrix resulting from the hallmark gene set
enrichment test (191 patients by 50 hallmark gene sets) were transformed into
standardized z-scores of −log(p-value) for each hallmark gene set to minimize the
different scales between the hallmark gene sets. By applying the mRMR method, 37
hallmark gene sets were selected, which enables the transformed matrix to be
reduced to a matrix of 191 patients by 37 hallmark gene sets. From the k-means
clustering, we found five clusters and examined the statistically significant
enrichment of tumor stages in each cluster (hypergeometric test), which resulted in
three clusters that have different tumor stage characteristics. To determine the
phenotypic characteristics of each cluster, we selected 12 hallmark gene sets that
are statistically significant in all three clusters (−log(p-value) > −log(0.05)) (Sup-
plementary Fig. 22). From the comparison of the statistical significance of the three
clusters in each significant hallmark gene set, we finally found biologically mean-
ingful hallmark gene sets that show significant differences in the statistical test
results between a group with the highest −log(p-value) and the other two groups
(Wilcoxon rank-sum test).

Immune scoring system based on hallmark gene sets. We investigated whether
the immune score based on the hallmark gene set analysis is well distinguishable
between MSI and MSS patients. For this, we introduced three immune scores that
are defined with the statistical significance of specific hallmark gene sets associated
with immune response, such as the immune process category from MSigDB, the
immune response factor from our factor analysis, and carefully selected hallmark
gene sets that are considered essential for the immune response. The immune
scores that we defined show a statistically significant difference between the MSI
and MSS patients (Supplementary Fig. 14a). We compared our MSI/MSS classifi-
cation with the groupings based on several estimates related to immune response or
tumor purity including (i) ESTIMATE59, which represents the fraction of stromal
and immune cells in tumor samples, (ii) Immune score59, which is a basis for the
ESTIMATE score and predicts the level of infiltrating immune cells, (iii) Leukocyte
score60, which is strongly associated with microsatellite instability, (iv) ABSO-
LUTE61, which estimates tumor purity in cancer samples, (v) the consensus
measurement of purity estimations (CPE)62 incorporating previous tumor purity
estimates, and (vi) image analysis of hematoxylin and eosin stain slides (IHC)62.
While the immune response scores, such as the Immune score, Leukocyte score,
and ESTIMATE, were significantly higher in the MSI than in the MSS patients
(Supplementary Fig. 14b), the tumor purity estimates, such as ABSOLUTE and
CPE, were significantly lower in the MSI than in the MSS patients; however, no
significant difference in IHC was observed between the two patient groups (Sup-
plementary Fig. 14c). Therefore, our results indicate that the immune scoring
system based on the hallmark gene set, which takes into account both the mutation
and expression profiles, can discriminate MSI and MSS colon cancer patients.

The GPC size according to mutation selection rules. We applied three different
mutation selection rules to identify the order of somatic mutations during
tumorigenesis for each patient and then investigated the order of the most com-
monly observed key driver mutations in colorectal cancers, APC, TP53, KRAS,
PIK3CA, and SMAD4. To estimate the order of a pair of driver mutations in each
patient, patients who had more than two driver mutations were considered, and
patients who had more than 65 somatic mutations were excluded to reduce
computational complexity, which finally left 129 patients for the analysis. For
individual patients, we performed the following processes to simulate the change in
the size of the GPC according to the rules (see Supplementary Fig. 15 for flowchart
of the process). Step 1: We selected an initial mutation among all the mutations
except driver mutations. Step 2: According to each rule, we determined the next
mutation to be added at each evolution time step. Step 3: We repeated the previous
steps starting from all the available initial mutations and finally obtained as many
mutation sequences as the order of the total number of somatic mutations of the
patient. Step 4: By investigating the order of a pair of key driver mutations in the
resulting mutation sequences across patients, we constructed a matrix that exhibits
the number of mutation sequences such that one driver mutation in a row occurs
earlier than the other driver mutation in a column (Fig. 5d–f). Step 5: For each
mutation sequence of patients, we calculated the size of the GPC along with the
accumulation of somatic mutations (Fig. 5h).

Description of the mutation selection rules. The first mutation selection rule was
to choose the next mutation that minimizes the overlap with all the previous
mutations (Fig. 5a). The degree of overlap between a pair of genes is determined
only by their topological properties without applying the network propagation, i.e.,
the shortest path length between them and their node degrees (Supplementary
Fig. 16). The overlap index based on the network propagation, such as the Jaccard
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index in Fig. 2c, cannot measure the degree of overlap when two mutation-
propagating modules are not overlapped, whereas the overlap index based on the
network topology can measure the probability of two mutations to be overlapped
even when two mutations are located extremely far from each other. The second
rule was to select the next mutated gene such that the size of the connected module
between a mutation candidate and all the previously mutated genes was maximized
(Fig. 5b). When all mutation candidates did not form any connected modules with
previous mutations, the next mutation was randomly selected among the mutation
candidates. We used the threshold, V= 0.001, to determine the GC. The last rule
was to select the next mutated gene that minimized the size of the connected
module between a mutation candidate and all the previously mutated genes among
mutation candidates overlapped with any previously mutated ones. In the case of
the last rule, we first screened mutation candidates in which their mutation-
propagating modules overlapped with those of previously mutated genes. Among
them, we selected the next mutation such that the size of the connected module
between a mutation candidate and all the previously mutated genes were mini-
mized (Fig. 5c). In the case when all mutation candidates did not form any con-
nected modules with previous mutations, the next mutation was randomly selected
among the mutation candidates. We used the threshold, V= 0.001, to determine
the GC.

Influence of tumor heterogeneity on the formation of a GPC. We investigated
whether the GPC size depends on the tumor heterogeneity by using the mutation
profiles obtained from the multiregion biopsies of the primary regions from col-
orectal cancers with whole-exome sequencing46. Among five colorectal cancer
patients, we selected two patients, CRC2 and CRC3, both of which have five
subclones in each primary tumor. Although they have the same number of sub-
clones, they are different in terms of the tumor heterogeneity because they have
different mutation patterns. The proportion of private mutations, a set of muta-
tions that are found in some subclones, of CRC2 is 63% of all the mutations, which
is slightly higher than that of CRC3 (60%) (Supplementary Fig. 20a). Moreover,
more than half of the cancer genes of CRC2 are contained in the private mutation
pool (6 of 11, 55%), whereas in CRC3, only one cancer gene is included in the
private mutation pool (1 of 4, 25%). These differential mutation patterns between
CRC2 and CRC3 indicate that the CRC2 sample seems to be more heterogeneous
than the CRC3 sample. Next, we examined the size of the GPC for individual
subclones and that for the bulk, which includes all the mutations of the subclones.
Supplementary Fig. 20b shows that the GPC size of the CRC2 bulk increased by
23% compared to the union of the GPCs of the subclones, whereas that of CRC3
increased by 15%. This difference can be understood by considering two extreme
examples, two subclones having the exact same mutation profiles and two sub-
clones having mutually exclusive mutation profiles. In the former case (perfect
homogeneity), there will be no increase in the GPC size of the bulk because the
bulk also has the same mutation profile as the subclones. However, in the latter
case (perfect heterogeneity), the GPC size of the bulk can increase significantly if
the two GPCs of the subclones are close enough but do not overlap. But both
extreme cases are unrealistic. Indeed, subclones share some mutations, but many
mutations are often distributed in distinct signaling pathways between different
subclones. Then, the GPC of the bulk will be larger than the union of the GPCs of
the subclones because although there is no actual interaction between the signaling
pathways in different subclones, the signaling pathways appear to cooperate with
each other in the bulk case leading to a larger GPC. Therefore, we can conclude
that as the tumor heterogeneity of a bulk tumor increases, the effect on the for-
mation of the GPC becomes larger.

Data availability. All relevant data and codes are available from the authors.
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